dep: Add fast_float
This commit is contained in:
194
dep/fast_float/include/fast_float/decimal_to_binary.h
Normal file
194
dep/fast_float/include/fast_float/decimal_to_binary.h
Normal file
@ -0,0 +1,194 @@
|
||||
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
|
||||
#define FASTFLOAT_DECIMAL_TO_BINARY_H
|
||||
|
||||
#include "float_common.h"
|
||||
#include "fast_table.h"
|
||||
#include <cfloat>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
|
||||
// the result, with the "high" part corresponding to the most significant bits and the
|
||||
// low part corresponding to the least significant bits.
|
||||
//
|
||||
template <int bit_precision>
|
||||
fastfloat_really_inline
|
||||
value128 compute_product_approximation(int64_t q, uint64_t w) {
|
||||
const int index = 2 * int(q - powers::smallest_power_of_five);
|
||||
// For small values of q, e.g., q in [0,27], the answer is always exact because
|
||||
// The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
|
||||
// gives the exact answer.
|
||||
value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
|
||||
static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]");
|
||||
constexpr uint64_t precision_mask = (bit_precision < 64) ?
|
||||
(uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
|
||||
: uint64_t(0xFFFFFFFFFFFFFFFF);
|
||||
if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower)
|
||||
// regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
|
||||
value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
|
||||
firstproduct.low += secondproduct.high;
|
||||
if(secondproduct.high > firstproduct.low) {
|
||||
firstproduct.high++;
|
||||
}
|
||||
}
|
||||
return firstproduct;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
/**
|
||||
* For q in (0,350), we have that
|
||||
* f = (((152170 + 65536) * q ) >> 16);
|
||||
* is equal to
|
||||
* floor(p) + q
|
||||
* where
|
||||
* p = log(5**q)/log(2) = q * log(5)/log(2)
|
||||
*
|
||||
* For negative values of q in (-400,0), we have that
|
||||
* f = (((152170 + 65536) * q ) >> 16);
|
||||
* is equal to
|
||||
* -ceil(p) + q
|
||||
* where
|
||||
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
|
||||
*/
|
||||
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
|
||||
return (((152170 + 65536) * q) >> 16) + 63;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
// create an adjusted mantissa, biased by the invalid power2
|
||||
// for significant digits already multiplied by 10 ** q.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline
|
||||
adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
|
||||
int hilz = int(w >> 63) ^ 1;
|
||||
adjusted_mantissa answer;
|
||||
answer.mantissa = w << hilz;
|
||||
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
|
||||
return answer;
|
||||
}
|
||||
|
||||
// w * 10 ** q, without rounding the representation up.
|
||||
// the power2 in the exponent will be adjusted by invalid_am_bias.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline
|
||||
adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept {
|
||||
int lz = leading_zeroes(w);
|
||||
w <<= lz;
|
||||
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
return compute_error_scaled<binary>(q, product.high, lz);
|
||||
}
|
||||
|
||||
// w * 10 ** q
|
||||
// The returned value should be a valid ieee64 number that simply need to be packed.
|
||||
// However, in some very rare cases, the computation will fail. In such cases, we
|
||||
// return an adjusted_mantissa with a negative power of 2: the caller should recompute
|
||||
// in such cases.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline
|
||||
adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
adjusted_mantissa answer;
|
||||
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
// result should be zero
|
||||
return answer;
|
||||
}
|
||||
if (q > binary::largest_power_of_ten()) {
|
||||
// we want to get infinity:
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
// At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].
|
||||
|
||||
// We want the most significant bit of i to be 1. Shift if needed.
|
||||
int lz = leading_zeroes(w);
|
||||
w <<= lz;
|
||||
|
||||
// The required precision is binary::mantissa_explicit_bits() + 3 because
|
||||
// 1. We need the implicit bit
|
||||
// 2. We need an extra bit for rounding purposes
|
||||
// 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)
|
||||
|
||||
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further
|
||||
// In some very rare cases, this could happen, in which case we might need a more accurate
|
||||
// computation that what we can provide cheaply. This is very, very unlikely.
|
||||
//
|
||||
const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0,
|
||||
// and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation.
|
||||
if(!inside_safe_exponent) {
|
||||
return compute_error_scaled<binary>(q, product.high, lz);
|
||||
}
|
||||
}
|
||||
// The "compute_product_approximation" function can be slightly slower than a branchless approach:
|
||||
// value128 product = compute_product(q, w);
|
||||
// but in practice, we can win big with the compute_product_approximation if its additional branch
|
||||
// is easily predicted. Which is best is data specific.
|
||||
int upperbit = int(product.high >> 63);
|
||||
|
||||
answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
|
||||
if (answer.power2 <= 0) { // we have a subnormal?
|
||||
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
|
||||
if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
// result should be zero
|
||||
return answer;
|
||||
}
|
||||
// next line is safe because -answer.power2 + 1 < 64
|
||||
answer.mantissa >>= -answer.power2 + 1;
|
||||
// Thankfully, we can't have both "round-to-even" and subnormals because
|
||||
// "round-to-even" only occurs for powers close to 0.
|
||||
answer.mantissa += (answer.mantissa & 1); // round up
|
||||
answer.mantissa >>= 1;
|
||||
// There is a weird scenario where we don't have a subnormal but just.
|
||||
// Suppose we start with 2.2250738585072013e-308, we end up
|
||||
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
|
||||
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
|
||||
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
|
||||
// subnormal, but we can only know this after rounding.
|
||||
// So we only declare a subnormal if we are smaller than the threshold.
|
||||
answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
|
||||
return answer;
|
||||
}
|
||||
|
||||
// usually, we round *up*, but if we fall right in between and and we have an
|
||||
// even basis, we need to round down
|
||||
// We are only concerned with the cases where 5**q fits in single 64-bit word.
|
||||
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
|
||||
((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
|
||||
// To be in-between two floats we need that in doing
|
||||
// answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
// ... we dropped out only zeroes. But if this happened, then we can go back!!!
|
||||
if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) {
|
||||
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
|
||||
}
|
||||
}
|
||||
|
||||
answer.mantissa += (answer.mantissa & 1); // round up
|
||||
answer.mantissa >>= 1;
|
||||
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
|
||||
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
|
||||
answer.power2++; // undo previous addition
|
||||
}
|
||||
|
||||
answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
|
||||
if (answer.power2 >= binary::infinite_power()) { // infinity
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user